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Classical Parallelization Approaches

Modular Approaches

I Chinese remainder,

rational reconstruction

I advantage: splits problem into smaller ones,
avoids intermediate coefficient swell

I drawback: existence of bad primes,
decision on correctness of final result
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Classical Parallelization Approaches

Inherently Parallel Structure of Task

I relies on knowledge about the problem

I advantage: optimally suits the problem

I drawback: only applicable for certain tasks
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e.g. ADE-singularities in normalization,
charts in algorithmic desingularization

inherently parallel structure need not be obvious
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Recall: Jacobian criterion

I = 〈f1, . . . , fs〉 ⊆ C[x ] equidimensional
X = V (I ), dim(X ) = n − c

J = ideal of c × c minors of Jacobian matrix of I

Sing(X ) = V (I + J)

in a smoothness test:

X non-singular⇐⇒ Sing(X ) = ∅
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Jacobian criterion in parallel?

time consuming steps:

I computing
(n
c

)
·
(s
c

)
minors

I testing whether 1 ∈
√
I + J

structural considerations on parallelization:

I computing a single minor:
moderately expensive,
potentially relatively large input and output

I ideal of minors:
expensive due to combinatorial complexity

I radical membership test:
Gröbner Basis, expensive,
very large input, small output
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Gröbner Basis, expensive,

very large input, small output



Parallel
Smoothness Test

A. Frühbis-Krüger
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Hironaka’s ν∗-Invariant

Defintion[Hironaka]
(X , 0) ⊂ (An

C, 0) germ,
IX ,0 = 〈f1, . . . , fs〉 ⊂ C{x}
f1, . . . , fs SB of IX ,0, sorted by increasing order

ν∗(X , 0) := (ord0(f1), . . . , ord0(fs))

Lemma[Hironaka]

(X , 0) non-singular⇐⇒ ν∗(X , 0) = (1, . . . , 1︸ ︷︷ ︸
codim(X )

)
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Hironaka’s criterion: computational viewpoint

Comparison of the criteria:

Jacobian criterion computing singular locus

Hironaka’s criterion testing non-singularity

Tasks for Hironaka’s criterion:

I locus of order at least 2 (if = ∅: non-singular)

I determine hypersurface of maximal contact (local
object)

I descent in ambient dimension for considering next ideal
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Parallel Algorithms

Smoothness

Smoothness II

Algorithm

Hybrid Approach

Summary

The Main Algorithm

Input:

I g polynomial

I IW = 〈g1, . . . , gr 〉 non-singular CI on D(g)

I IX = 〈f1, . . . , fs〉, IW ⊆ IX

Output:

I True (X non-singular) or False (X singular)

1. if (IW == IX on D(g)) return(True)

2. if (not CheckOrder(IW ,IX ,g))return(False)

3. list L =DescendOneStep(IW ,IX,g)

4. for (IU , IX |U , gU) ∈ L do

I if (not SmoothnessTest(IU , IX |U , gU))
return(False)
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The workhorses: CheckOrder

CheckOrder – only general idea

I Find regular system of parameters y for W ∩ D(g)
locally

I compute

J = IX + 〈 ∂fi
∂yj
〉

(ideal of locus of order at least 2)

I test V (J) == ∅

in general: no ’global’ regular system of parameters
⇒ covering by principal open subsets
⇒ recombination step
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The workhorses: DescendOneStep

DescendOneStep – only general idea

I use ⋂
Sing(fi ) = ∅

to cover W ∩ D(g)

Hironaka’s descend in ambient dimension

I covering by principal open subsets,
splitting up the problem

I no recombination step possible
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A Hybrid Approach

expensive parts of Hironaka style approach:

I descent in ambient dimension

I differentiation w.r.t. regular system of parameters

hybrid approach:

I descend several dimension steps
(number of steps tunable)

I use Jacobian criterion for (IU , IX |U , gU)
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The timings

Tabelle : Timings and Memory Usage

smoothtst hybrid Jacobian
smooth time ’parallel’ mem time ’parallel’ mem time mem

I1(6) yes 0.24 0.07 0.22 0.18 0.05 0.22 2.5 34
I1(7) yes 0.60 0.17 0.24 0.35 0.10 0.22 310 1300
I1(8) yes 0.86 0.22 0.32 0.64 0.15 0.23 − > 20000

I2(3) yes 0.22 0.04 0.14 0.08 0.02 0.14 0.05 4.2
I2(4) yes 160 9.1 27 40 4.9 190 15 450
I2(5) yes − − − 1200 14 510 4000 16000

I3(4) no 0.30 0.05 0.22 0.15 0.03 0.22 1.0 8.6
I3(5) yes 0.72 0.10 0.22 0.38 0.07 0.22 110 300
I3(6) yes 1.3 0.18 0.22 0.83 0.11 0.22 2500 2300

I4(6, 3) no 0.02 0.01 0.14 0.02 0.01 0.14 3.1 34
I4(7, 3) no 0.04 0.02 0.14 0.04 0.01 0.14 1600 4000
I4(7, 4) no 0.10 0.02 0.14 0.10 0.02 0.14 4300 4000



Parallel
Smoothness Test

A. Frühbis-Krüger
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Hironaka’s smoothness test:

I inherently parallel through use of charts

I powerful where combinatorics impedes Jacobian
criterion

I hybrid approach most beneficial

Applications:
whereever explicit smoothness tests are necessary

In general:

I parallel methods based on charts well-known in
algebraic geometry

I up to now rarely exploited for parallel algorithms
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Thank you
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