Parallel Algorithms in Algebraic Geometry

Anne Frühbis-Krüger

Institut für Algebraische Geometrie Leibniz Universität Hannover

7ECM, Berlin, 20.7.2016

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Modular Approaches

Chinese remainder,

Parallel Smoothness Test

A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Modular Approaches

Chinese remainder, rational reconstruction

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Modular Approaches

- Chinese remainder, rational reconstruction
- advantage: splits problem into smaller ones, avoids intermediate coefficient swell

Parallel Smoothness Test

A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Modular Approaches

- Chinese remainder, rational reconstruction
- advantage: splits problem into smaller ones, avoids intermediate coefficient swell
- drawback: existence of bad primes, decision on correctness of final result

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Modular Approaches

- Chinese remainder, rational reconstruction
- advantage: splits problem into smaller ones, avoids intermediate coefficient swell
- drawback: existence of bad primes, decision on correctness of final result
- applications in algebraic geometry: e.g. Gröbner Bases, normalization, integral bases

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Inherently Parallel Structure of Task

relies on knowledge about the problem

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Inherently Parallel Structure of Task

- relies on knowledge about the problem
- advantage: optimally suits the problem

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Inherently Parallel Structure of Task

- relies on knowledge about the problem
- advantage: optimally suits the problem
- drawback: only applicable for certain tasks

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Inherently Parallel Structure of Task

- relies on knowledge about the problem
- advantage: optimally suits the problem
- drawback: only applicable for certain tasks
- applications in algebraic geometry:
 e.g. ADE-singularities in normalization,

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Inherently Parallel Structure of Task

- relies on knowledge about the problem
- advantage: optimally suits the problem
- drawback: only applicable for certain tasks
- applications in algebraic geometry:
 e.g. ADE-singularities in normalization,
 charts in algorithmic desingularization

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Inherently Parallel Structure of Task

- relies on knowledge about the problem
- advantage: optimally suits the problem
- drawback: only applicable for certain tasks
- applications in algebraic geometry:
 e.g. ADE-singularities in normalization,
 charts in algorithmic desingularization

inherently parallel structure need not be obvious

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

 $I = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{C}[\underline{x}]$ equidimensional X = V(I), dim(X) = n - c

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

 $I = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{C}[\underline{x}]$ equidimensional X = V(I), dim(X) = n - c

J = ideal of $c \times c$ minors of Jacobian matrix of I

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

 $I = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{C}[\underline{x}]$ equidimensional X = V(I), dim(X) = n - c

J = ideal of $c \times c$ minors of Jacobian matrix of I

 $\operatorname{Sing}(X) = V(I+J)$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

 $I = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{C}[\underline{x}]$ equidimensional X = V(I), dim(X) = n - c

J = ideal of $c \times c$ minors of Jacobian matrix of I

 $\operatorname{Sing}(X) = V(I+J)$

in a smoothness test:

X non-singular \iff Sing $(X) = \emptyset$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

• computing $\binom{n}{c} \cdot \binom{s}{c}$ minors

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

- computing $\binom{n}{c} \cdot \binom{s}{c}$ minors
- testing whether $1 \in \sqrt{I+J}$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

- computing $\binom{n}{c} \cdot \binom{s}{c}$ minors
- testing whether $1 \in \sqrt{I+J}$

structural considerations on parallelization:

 computing a single minor: moderately expensive, Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

- computing $\binom{n}{c} \cdot \binom{s}{c}$ minors
- testing whether $1 \in \sqrt{I+J}$

structural considerations on parallelization:

 computing a single minor: moderately expensive, potentially relatively large input and output Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

- computing $\binom{n}{c} \cdot \binom{s}{c}$ minors
- testing whether $1 \in \sqrt{I+J}$

structural considerations on parallelization:

- computing a single minor: moderately expensive, potentially relatively large input and output
- ideal of minors: expensive due to combinatorial complexity

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

- computing $\binom{n}{c} \cdot \binom{s}{c}$ minors
- testing whether $1 \in \sqrt{I+J}$

structural considerations on parallelization:

- computing a single minor: moderately expensive, potentially relatively large input and output
- ideal of minors: expensive due to combinatorial complexity
- radical membership test: Gröbner Basis, expensive,

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

time consuming steps:

- computing $\binom{n}{c} \cdot \binom{s}{c}$ minors
- testing whether $1 \in \sqrt{I+J}$

structural considerations on parallelization:

- computing a single minor: moderately expensive, potentially relatively large input and output
- ideal of minors: expensive due to combinatorial complexity
- radical membership test: Gröbner Basis, expensive, very large input, small output

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Hironaka's ν^* -Invariant

Defintion[Hironaka]

 $\begin{aligned} & (X,0) \subset (\mathbb{A}^n_{\mathbb{C}},0) \text{ germ,} \\ & I_{X,0} = \langle f_1, \dots, f_s \rangle \subset \mathbb{C}\{\underline{x}\} \\ & f_1, \dots, f_s \text{ SB of } I_{X,0} \text{, sorted by increasing order} \end{aligned}$

$$u^*(X,0) := (\mathit{ord}_0(\mathit{f}_1),\ldots,\mathit{ord}_0(\mathit{f}_s))$$

Lemma[Hironaka]

$$(X,0)$$
 non-singular $\iff \nu^*(X,0) = (\underbrace{1,\ldots,1}_{\operatorname{codim}(X)})$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Comparison of the criteria:

Jacobian criterion computing singular locus Hironaka's criterion testing non-singularity Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Comparison of the criteria:

Jacobian criterion computing singular locus Hironaka's criterion testing non-singularity

Tasks for Hironaka's criterion:

• locus of order at least 2 (if = \emptyset : non-singular)

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Comparison of the criteria:

Jacobian criterion computing singular locus Hironaka's criterion testing non-singularity

Tasks for Hironaka's criterion:

- locus of order at least 2 (if $= \emptyset$: non-singular)
- determine hypersurface of maximal contact (local object)

Parallel Smoothness Test

A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Comparison of the criteria:

Jacobian criterion computing singular locus Hironaka's criterion testing non-singularity

Tasks for Hironaka's criterion:

- locus of order at least 2 (if $= \emptyset$: non-singular)
- determine hypersurface of maximal contact (local object)
- descent in ambient dimension for considering next ideal

Parallel Smoothness Test

A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

The Main Algorithm

Input:

- g polynomial
- $I_W = \langle g_1, \ldots, g_r \rangle$ non-singular CI on D(g)

$$\blacktriangleright I_X = \langle f_1, \ldots, f_s \rangle, \ I_W \subseteq I_X$$

Output:

True (X non-singular) or False (X singular)

1. if
$$(I_W == I_X \text{ on } D(g))$$
 return(True)

- 2. if (not CheckOrder(I_W, I_X, g))return(False)
- 3. list $L = \text{DescendOneStep}(I_W, I_X, g)$
- 4. for $(I_U, I_{X|U}, g_U) \in L$ do
 - ▶ if (not SmoothnessTest(I_U, I_{X|U}, g_U))
 return(False)

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

CheckOrder - only general idea

► Find regular system of parameters y for W ∩ D(g) locally

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

CheckOrder - only general idea

► Find regular system of parameters <u>y</u> for W ∩ D(g) locally

compute

$$J = I_X + \langle \frac{\partial f_i}{\partial y_j} \rangle$$

(ideal of locus of order at least 2)

• test
$$V(J) == \emptyset$$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

CheckOrder - only general idea

► Find regular system of parameters <u>y</u> for W ∩ D(g) locally

compute

$$J = I_X + \langle \frac{\partial f_i}{\partial y_j} \rangle$$

(ideal of locus of order at least 2)

• test
$$V(J) == \emptyset$$

in general: no 'global' regular system of parameters

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

CheckOrder - only general idea

► Find regular system of parameters <u>y</u> for W ∩ D(g) locally

compute

$$J = I_X + \langle \frac{\partial f_i}{\partial y_j} \rangle$$

(ideal of locus of order at least 2)

• test
$$V(J) == \emptyset$$

in general: no 'global' regular system of parameters \Rightarrow covering by principal open subsets

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

CheckOrder - only general idea

► Find regular system of parameters <u>y</u> for W ∩ D(g) locally

compute

$$J = I_X + \langle \frac{\partial f_i}{\partial y_j} \rangle$$

(ideal of locus of order at least 2)

• test
$$V(J) == \emptyset$$

in general: no 'global' regular system of parameters

- \Rightarrow covering by principal open subsets
- \Rightarrow recombination step

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

DescendOneStep - only general idea

use

$$\bigcap \mathsf{Sing}(f_i) = \emptyset$$

to cover $W \cap D(g)$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

DescendOneStep - only general idea

use

$$\bigcap \mathsf{Sing}(f_i) = \emptyset$$

to cover $W \cap D(g)$

Hironaka's descend in ambient dimension

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

DescendOneStep - only general idea

• use $\bigcap \operatorname{Sing}(f_i) = \emptyset$ to cover $W \cap D(g)$

Hironaka's descend in ambient dimension

 covering by principal open subsets, splitting up the problem

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

DescendOneStep - only general idea

• use $\bigcap \operatorname{Sing}(f_i) = \emptyset$ to cover $W \cap D(g)$

Hironaka's descend in ambient dimension

- covering by principal open subsets, splitting up the problem
- no recombination step possible

Parallel Algorithms

Smoothness

Smoothness II

Algorithm Hybrid Approach

A Hybrid Approach

expensive parts of Hironaka style approach:

- descent in ambient dimension
- differentiation w.r.t. regular system of parameters

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

A Hybrid Approach

expensive parts of Hironaka style approach:

- descent in ambient dimension
- differentiation w.r.t. regular system of parameters

hybrid approach:

- descend several dimension steps (number of steps tunable)
- use Jacobian criterion for $(I_U, I_{X|U}, g_U)$

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

The timings

Parallel Smoothness Test

A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Tabelle :	Timings	and	Memory	Usage
-----------	---------	-----	--------	-------

	smoothtst			hybrid			Jacobian		
	smooth	time	'parallel'	mem	time	'parallel'	mem	time	mem
$I_{1}(6)$	yes	0.24	0.07	0.22	0.18	0.05	0.22	2.5	34
$I_{1}(7)$	yes	0.60	0.17	0.24	0.35	0.10	0.22	310	1300
$\mathcal{I}_1(8)$	yes	0.86	0.22	0.32	0.64	0.15	0.23	-	> 20000
$\mathcal{I}_2(3)$	yes	0.22	0.04	0.14	0.08	0.02	0.14	0.05	4.2
$\mathcal{I}_2(4)$	yes	160	9.1	27	40	4.9	190	15	450
$\mathcal{I}_2(5)$	yes	-	-	-	1200	14	510	4000	16000
I ₃ (4)	no	0.30	0.05	0.22	0.15	0.03	0.22	1.0	8.6
$I_{3}(5)$	yes	0.72	0.10	0.22	0.38	0.07	0.22	110	300
$I_{3}(6)$	yes	1.3	0.18	0.22	0.83	0.11	0.22	2500	2300
$I_4(6,3)$	no	0.02	0.01	0.14	0.02	0.01	0.14	3.1	34
$I_4(7,3)$	no	0.04	0.02	0.14	0.04	0.01	0.14	1600	4000
$I_4(7, 4)$	no	0.10	0.02	0.14	0.10	0.02	0.14	4300	4000

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

inherently parallel through use of charts

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

- inherently parallel through use of charts
- powerful where combinatorics impedes Jacobian criterion
- hybrid approach most beneficial

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

- inherently parallel through use of charts
- powerful where combinatorics impedes Jacobian criterion
- hybrid approach most beneficial

Applications: whereever explicit smoothness tests are necessary

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

- inherently parallel through use of charts
- powerful where combinatorics impedes Jacobian criterion
- hybrid approach most beneficial

Applications:

whereever explicit smoothness tests are necessary

In general:

- parallel methods based on charts well-known in algebraic geometry
- up to now rarely exploited for parallel algorithms

Parallel Smoothness Test A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Parallel Smoothness Test

A. Frühbis-Krüger

Parallel Algorithms

Smoothness

Smoothness II Algorithm Hybrid Approach

Summary

Thank you